RSPT 1050 - Module B: Practice Problems

Express compliance problems in $\mathrm{mL} / \mathrm{cm} \mathrm{H}_{2} \mathrm{O}$ and L/cm $\mathrm{H}_{2} \mathrm{O}$

1. Given a tidal volume of 400 mL and a pressure of $50 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$, calculate the compliance.

$$
C=\frac{\Delta V}{\Delta P}=\frac{400 \mathrm{~mL}}{50 \mathrm{cmH}_{2} \mathrm{O}}=\frac{0.4 \mathrm{~L}}{50 \mathrm{cmH}_{2} \mathrm{O}}=0.008 \mathrm{~L} / \mathrm{cmH}_{2} \mathrm{O}
$$

2. Given a tidal volume of 300 mL and a pressure of $35 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$, calculate the compliance.

$$
C=\frac{\Delta V}{\Delta P}=\frac{300 \mathrm{~mL}}{35 \mathrm{cmH}_{2} \mathrm{O}}=\frac{0.3 \mathrm{~L}}{35 \mathrm{cmH}_{2} \mathrm{O}}=0.009 \mathrm{~L} / \mathrm{cmH}_{2} \mathrm{O}
$$

3. Given a tidal volume of 800 mL and a pressure of $10 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$, calculate the compliance.

$$
C=\frac{\Delta V}{\Delta P}=\frac{800 \mathrm{~mL}}{10 \mathrm{cmH}_{2} \mathrm{O}}=\frac{0.8 \mathrm{~L}}{10 \mathrm{cmH}_{2} \mathrm{O}}=0.080 \mathrm{~L} / \mathrm{cmH}_{2} \mathrm{O}
$$

4. Given a tidal volume of 600 mL and a pressure of $30 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$, calculate the compliance.

$$
C=\frac{\Delta V}{\Delta P}=\frac{600 \mathrm{~mL}}{30 \mathrm{cmH}_{2} \mathrm{O}}=\frac{0.6 \mathrm{~L}}{30 \mathrm{cmH}_{2} \mathrm{O}}=0.020 \mathrm{~L} / \mathrm{cmH}_{2} \mathrm{O}
$$

5. Given a tidal volume of 700 mL and a pressure of $60 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$, calculate the compliance.

$$
C=\frac{\Delta V}{\Delta P}=\frac{700 \mathrm{~mL}}{60 \mathrm{cmH}_{2} \mathrm{O}}=\frac{0.7 \mathrm{~L}}{60 \mathrm{cmH}_{2} \mathrm{O}}=0.012 \mathrm{~L} / \mathrm{cmH}_{2} \mathrm{O}
$$

6. Given an inspiratory flowrate of $500 \mathrm{~mL} / \mathrm{sec}$, and an inspiratory time of 0.6 seconds, calculate the tidal volume.

$$
500 \mathrm{~mL} / \mathrm{sec} \times 0.6 \mathrm{sec}=300 \mathrm{~mL}
$$

7. Given an inspiratory flowrate of $0.1 \mathrm{~L} / \mathrm{sec}$, and an inspiratory time of 0.6 seconds, calculate the tidal volume.

$$
0.1 \mathrm{~L} / \mathrm{sec} \times 0.6 \mathrm{sec}=0.06 \mathrm{~L}=60 \mathrm{~mL}
$$

8. Given an inspiratory flowrate of $300 \mathrm{~mL} / \mathrm{sec}$, and an inspiratory time of 0.8 seconds, calculate the tidal volume.
$300 \mathrm{~mL} / \mathrm{sec} \times 0.8 \mathrm{sec}=240 \mathrm{~mL}$
9. Given an inspiratory flowrate of $400 \mathrm{~mL} / \mathrm{sec}$, and an inspiratory time of 1.0 second, calculate the tidal volume.
$400 \mathrm{~mL} / \mathrm{sec} \times 1.0 \mathrm{sec}=400 \mathrm{~mL}$
10. Given an inspiratory flowrate of $150 \mathrm{~mL} / \mathrm{sec}$, and an inspiratory time of 3 seconds, calculate the tidal volume.
$150 \mathrm{~mL} / \mathrm{sec} \times 3.0 \mathrm{sec}=450 \mathrm{~mL}$
11. Given a flowrate of $1.2 \mathrm{~L} / \mathrm{sec}$ and a pressure of $40 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$, calculate the airway resistance.
$R_{\text {aw }}=\frac{\Delta P}{\dot{V}}=\frac{40 \mathrm{cmH}_{2} \mathrm{O}}{1.2 \mathrm{~L} / \mathrm{sec}}=33.3 \mathrm{cmH}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}$
12. Given a flowrate of $0.8 \mathrm{~L} / \mathrm{sec}$ and a pressure of $50 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$, calculate the airway resistance.
$R_{\mathrm{aw}}=\frac{\Delta P}{\dot{V}}=\frac{50 \mathrm{cmH}_{2} \mathrm{O}}{0.8 \mathrm{~L} / \mathrm{sec}}=62.5 \mathrm{cmH}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}$
13. Given a flowrate of $1.3 \mathrm{~L} / \mathrm{sec}$ and a pressure of $30 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$, calculate the airway resistance.

$$
R_{\mathrm{aw}}=\frac{\Delta P}{\dot{V}}=\frac{30 \mathrm{cmH}_{2} \mathrm{O}}{1.3 \mathrm{~L} / \mathrm{sec}}=23.1 \mathrm{cmH}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}
$$

14. Given a flowrate of $0.6 \mathrm{~L} / \mathrm{sec}$ and a pressure of $25 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$, calculate the airway resistance.

$$
R_{\mathrm{aw}}=\frac{\Delta P}{\dot{V}}=\frac{25 \mathrm{cmH}_{2} \mathrm{O}}{0.6 \mathrm{~L} / \mathrm{sec}}=41 . \overline{6} \mathrm{cmH}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}
$$

15. Given a flowrate of $1.2 \mathrm{~L} / \mathrm{sec}$ and a pressure of $15 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O}$, calculate the airway resistance

$$
R_{\mathrm{aw}}=\frac{\Delta P}{\dot{V}}=\frac{15 \mathrm{cmH}_{2} \mathrm{O}}{1.2 \mathrm{~L} / \mathrm{sec}}=12.5 \mathrm{cmH}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}
$$

