ASSIGNMENT MODULE C

1. List the fractional concentrations of the four major gases that comprise the atmosphere

Gas

A. Nitrogen
B. Oxygen
C. Argon
D. Carbon Dioxide

Fractional Concentration
78\%
21\%
0.9\%
0.03\%
2. Given a barometric pressure of 760 torr, calculate the PiO_{2} $($ PBaro $-47 \mathrm{~mm} \mathrm{Hg}) \times \mathrm{FiO}_{2}=(760-47) \times .21=150 \mathrm{~mm} \mathrm{Hg}$ REMEMBER TO SUBTRACT OUT 47 mm Hg WHENEVER YOU SEE THE SMALL "i" IN THE QUESTION ($\mathrm{PiO}_{2}, \mathrm{FiO}_{2}$)
3. Given a barometric pressure of 760 torr, calculate the PiN_{2} $($ PBaro $-47 \mathrm{~mm} \mathrm{Hg}) \times \mathrm{FiN}_{2}=(760-47) \times .78=556 \mathrm{~mm} \mathrm{Hg}$
4. Given a barometric pressure of 760 torr, calculate the PiAr
(PBaro - 47 mm Hg$) \times$ FiAr $=(760-47) \times .009=6.4 \mathrm{~mm} \mathrm{Hg}$
5. Given a barometric pressure of 760 torr, calculate the PiCO_{2}
$($ PBaro $-47 \mathrm{~mm} \mathrm{Hg}) \times \mathrm{FiCO}_{2}=(760-47) \times .0003=0.21 \mathrm{~mm} \mathrm{Hg}$
6. Given a barometric pressure of 750 torr, calculate the PiO_{2}
$($ PBaro $-47 \mathrm{~mm} \mathrm{Hg}) \times \mathrm{FiO}_{2}=(750-47) \times .21=148 \mathrm{~mm} \mathrm{Hg}$
7. Given a barometric pressure of 740 torr, calculate the PiCO_{2}
$($ PBaro $-47 \mathrm{~mm} \mathrm{Hg}) \times \mathrm{FiCO}_{2}=(740-47) \times .21=0.21 \mathrm{~mm} \mathrm{Hg}$
8. Given a barometric pressure of 755 torr and an FiO_{2} of . 40 , calculate the PiO_{2}
$($ PBaro $-47 \mathrm{~mm} \mathrm{Hg}) \times \mathrm{FiO}_{2}=(755-47) \times .40=283 \mathrm{~mm} \mathrm{Hg}$
9. Given a barometric pressure of 735 torr and an FiO_{2} of . 60, calculate the PiO_{2} $($ PBaro $-47 \mathrm{~mm} \mathrm{Hg}) \times \mathrm{FiO}_{2}=(735-47) \times .60=413 \mathrm{~mm} \mathrm{Hg}$
10. Given a barometric pressure of 740 torr and an FiO_{2} of . 30 , calculate the PiO_{2} $($ PBaro $-47 \mathrm{~mm} \mathrm{Hg}) \times \mathrm{FiO}_{2}=(740-47) \times .30=208 \mathrm{~mm} \mathrm{Hg}$
11. Given the following information, calculate the partial pressure of Gas C

Total Pressure in the gas mixture: 740 mm Hg
Partial Pressure of Gas A 400 torr
Partial Pressure of Gas B 30 torr
Partial Pressure of Gas D 50 torr
Partial Pressure of Gas E 35 torr Partial Pressure of Gas C ?

$$
\begin{aligned}
& \text { РтотAL }=\mathrm{PA}+\mathrm{PB}+\mathrm{PC}+\mathrm{PD}+\mathrm{PE} \\
& \mathrm{PC}=\text { PtOTAL }-(\mathrm{PA}+\mathrm{PB}+\mathrm{PD}+\mathrm{PE})=740-400-30-50-35=225 \mathrm{~mm} \mathrm{Hg}
\end{aligned}
$$

12. Given a PB of $760 \mathrm{~mm} \mathrm{Hg}, \mathrm{FiO}_{2}$ of .40 and a PaCO_{2} of 50 torr, calculate the PAO_{2}. $\mathrm{PAO}_{2}=\left[\left(\mathrm{PBaro}^{-47)} \times \mathrm{FiO}_{2}\right]-\left(\mathrm{PaCO}_{2} \times 1.25\right)=[(760-47) \times .4]-(50 \times 1.25)=\right.$ $[(713) \times(.4)]-62.5=285.2-62.5=223 \mathrm{~mm} \mathrm{Hg}$
13. Given a PB of $750 \mathrm{~mm} \mathrm{Hg}, \mathrm{FiO}_{2}$ of .50 and a PaCO_{2} of 70 torr, calculate the PAO_{2}. $\mathrm{PAO}_{2}=\left[\left(\mathrm{PBaro}^{-47)} \times \mathrm{FiO}_{2}\right]-\left(\mathrm{PaCO}_{2} \times 1.25\right)=[(750-47) \times .5]-(70 \times 1.25)=\right.$ [(703) x (.5)] - $87.5=351.5-87.5=264 \mathrm{~mm} \mathrm{Hg}$
