Self-Assessment RSPT 1050: Module G

- 1. Define P₅₀. The partial pressure that is present when 50% of the available hemoglobin is saturated with oxygen.
- 2. What is the normal P₅₀? **27 mm Hg**
- 3. Complete the following table

	<u>PaO2</u>	<u>SaO₂</u>
Α.	2 7 mm Hg	50%
В.	40 mm Hg	75%
C.	50 mm Hg	80%
D.	60 mm Hg	90%
Ε.	100 mm Hg	97%
	-	

- F. 250 mm Hg 100%
- If a patient has normal lungs and you put an oxygen mask on them that would deliver 100% oxygen, how high would you raise the PaO₂?
 [(PBARO 47) FiO₂] (PaCO₂ x 1.25) = [(760-47)1.0] -(40 x 1.25) = 713 -50 = 663 torr
- 5. How do you calculate the amount of dissolved oxygen in vol%? $PaO_2 \times .003$
- 6. The relationship between the PaO_2 and the SaO_2 is a sigmoidal shaped curve called the **OXYHEMOGLOBIN DISSOCIATION CURVE**.
- 7. The steep portion of the oxygen dissociation curve is
 - A. Above 60 mm Hg B. Below 60 mm Hg
- 8. The pulse oximeter should not be used in which of the following circumstances? (Circle all that apply)
 - A. Dark colored nail polish
 - B. Poor perfusion
 - C. Increased COHb%
 - D. Increased MetHb%
 - E. Intravascular dyes
- 9. What is the formula for Oxygen Delivery (DO₂)= CaO₂ X CO X 10
- 10. What is the normal oxygen delivery? **1,000 mL/min**
- 11. Given the following, calculate the CaO₂, CvO₂, CaO₂-CvO₂
 Hb: 8 gms% PaO₂: 66 mm Hg SaO₂: 90% PvO₂: 38 mm Hg SvO₂: 69%
 - A. $CaO_2 = (Hb \times 1.34 \times SaO_2) + (PaO_2 \times .003) = (8 \times 1.34 \times .9) + (66 \times .003) = 9.65 + .2 = 9.9 \text{ vol}\%$
 - B. CvO₂ = (Hb x 1.34 x SvO₂) + (PvO₂ x.003) = (8 x 1.34 x .69) + (38 x .003) = 7.40 + .11 = 7.5 vol%
 - C. $Ca-vO_2 = CaO_2 CvO_2 = 9.9 7.5 = 2.4 \text{ vol}\%$

- 12. Given the following blood gases indicate if the oxygen dissociation curve is shifted to the right, left, or no shift.
 - A. $PaO_2 40 \text{ mm Hg}, SaO_2 60\%$

B. PaO₂ 100 mm Hg, SaO₂ 99%

- C. $PaO_2 50 \text{ mm Hg}, SaO_2 80\%$
- $\mathsf{D.} \qquad \mathsf{PaO}_2 \ 40 \ \mathsf{mm} \ \mathsf{Hg}, \ \mathsf{SaO}_2 \ 50\%$

RIGHT LEFT NO SHIFT RIGHT

- 13. Methemoglobinemia results when the heme portion of the Hb molecule is oxidized from the **FERROUS** to the **FERRIC** state.
- 14. What is the normal oxygen extraction ratio? .25 OR 25%
- List clinical conditions that would increase a patient's oxygen consumption (VO₂).
 EXERCISE SEIZURES SHIVERING HYPERTHERMIA
- 16. What does refractory hypoxemia mean? **DOES NOT RESPOND TO OXYGEN THERAPY.**
- 17. A true capillary shunt has a V/Q of IGNORE THIS QUESTION THE ANSWER IS ZERO.
- A true shunt will respond to oxygen therapy
 A. True B. False
- 19. How is a true shunt treated? IGNORE (ANATOMICAL); SURGICAL REPAIR (CARDIAC DEFECT)
- 20. A relative shunt or shunt effect has a V/Q ratio of **BETWEEN ZERO AND 0.8**
- 21. A relative shunt will respond to oxygen therapy A. True B. False
- 22. What does the initials **PEEP** stand for? **POSITIVE END EXPIRATORY PRESSURE**
- 23. The normal anatomic shunt is 2-5% and results when venous blood mixes with arterial blood from which three veins?
 - A. THEBESIAN
 - B. **PLEURAL**
 - C. BRONCHIAL