I. ACID BASE BALANCE AND OXYGENATION

 $\begin{array}{ccc} \text{1.} & \text{pH} & \text{7.24} \\ & \text{PaCO}_2 & \text{80 mm Hg} \\ & \text{PO}_2 & \text{65 mm Hg} \end{array}$

 HCO_3 33 mEq/L FiO_2 .40

- a. Interpret the ABG. PARTIALLY COMPENSATED RESPIRATORY ACIDOSIS WITH MILD HYPOXEMIA
- b. Is this acute or chronic? **CHRONIC**
- c. Calculate the Total CO_2 (CO_2 Content). $HCO_3^- + (PaCO_2^- *.03)$ 33 + (80 *.03) = 33 + 2.4 = 35.4
- d. Describe the ventilation. Is the patient
 - i. Hyperventilating
 - ii. Hypoventilating
 - iii. Eucapnic
- 2. pH 7.40

PaCO₂ 65 mm Hg PO₂ 55 mm Hg HCO₃ 39 mEq/L

 FiO_2 .28

- a. Interpret the ABG. YOU REALLY CAN'T TELL. THE pH SHOULD NEVER GO BACK TO EXACTLY 7.40. IT IS USUALLY ON ONE SIDE OF THE MIDPOINT OR THE OTHER. SO WE REALLY DON'T KNOW FOR SURE IF THIS IS A FULLY COMPENSATED RESPIRATORY ACIDOSIS OR A FULLY COMPENSATED METABOLIC ALKALOSIS. EITHER IS POSSIBLE. MODERATE HYPOXEMIA IS PRESENT.
 - b. What is the HCO₃-/H₂CO₃ ratio?

$$\frac{39}{\left(65\times.03\right)} = \frac{39}{1.95} = 20:1$$

- c. Calculate the Total CO_2 (CO_2 Content).39 + 1.95 = 40.95 = 41.0
- d. Is this ABG acute or chronic? CHRONIC
- e. Describe the type of ventilation: Is the patient

Hyperventilating

Hypoventilating

Eucapnic

3. pH 7.34 $PaCO_2$ 80 mm Hg PO_2 40 mm Hg HCO_3^- 42 mEq/L FiO_2 .35

- a. Interpret the ABG. PARTIALLY COMPENSATED RESPIRATORY ACIDOSIS WITH MODERATE HYPOXEMIA
- b. Calculate the HCO₃ /H₂CO₃ ratio.

$$\frac{42}{\left(80\times.03\right)} = \frac{42}{2.4} = 17.5:1$$

c. Describe the type of ventilation: Is the patient Hyperventilating

Hypoventilating
Eucapnic

- 4. pH 7.62PaCO₂ 40 mm Hg PO₂ 88 mm Hg HCO₃ 40 mEq/L FiO₂ .30
 - a. Interpret the ABG. UNCOMPENSATED METABOLIC ALKALOSIS WITH NORMOXEMIA
 - b. Describe the type of ventilation. **EUCAPNIC**
 - c. Calculate the HCO_3 / H_2CO_3 ratio.

$$\frac{40}{\left(40\times.03\right)} = \frac{40}{1.2} = 33.3:1$$

d. Calculate the Total CO₂ (CO₂ content)

$$40 + 1.2 = 41.2$$

- 5. pH 7.47 PaCO₂ 20 mm Hg PO₂ 110 mm Hg HCO₃ 14 mEq/L FiO₂ .21
 - a. Interpret the ABG. PARTIALLY COMPENSATED RESPIRATORY ALKALOSIS WITH HYPEROXEMIA.
 - b. Calculate the HCO₃/H₂CO₃ ratio.

$$\frac{14}{(20\times.03)} = \frac{14}{.6} = 23.3:1$$

c. Calculate the Total CO_2 (CO_2 content).14 + .6 = 14.6

6. pН 7.02

PaCO₂ 60 mm Ha 70 mm Hg PO_2 15 mEq/L HCO_3

 FiO_2 .50

- a. Interpret the ABG. MIXED ACIDOSIS WITH MILD HYPOXEMIA.
- b. The oxygen dissociation curve would most likely be shifted to the **RIGHT**.
- c. Calculate the A-a gradient assuming the barometric pressure is 760 mm Hg.

[(760 - 47) * .50] - (60 * 1.25) = 356.5 - 75 = 281.5 = 282

- d. Describe the type of ventilation. **HYPOVENTILATION**
- e. Does the patient have hypoxia? POSSIBLY. THE LOW HCO₃ COUPLED WITH THE LOW PaO₂ INDICATES IT IS POSSIBLE.
- 7. pН 7.45

PaCO₂ 24 mm Hg PO_2 90 mm Hg HCO_3 16 mEq/L SaO₂ 55 % 50% COHb FiO₂ .35

- Interpret the ABG. FULLY COMPENSATED RESPIRATORY ALKALOIS a. WITH NORMOXEMIA.
- b. Does the patient have hypoxemia? NO Does the patient have hypoxia? YES. ANEMIC HYPOXIA.
- Describe the type of ventilation. **HYPERVENTILATION** C.
- 7.93 8. Ha

PaCO₂ 23 mm Hg 52 mm Hg PO_2 HCO_3 47 mEq/L

FiO₂ .60

- a. Interpret the ABG. MIXED ALKALOSIS WITH HYPOXEMIA
- b. Describe the type of ventilation. **HYPERVENTILATION**
- **Answers to Acid-Base Interpretation: Classroom Exercise** II.
 - 1. Mixed Respiratory and Metabolic Acidosis with hyperoxemia.
 - 2. Uncompensated Metabolic Alkalosis with moderate hypoxemia.

- 3. Partly Compensated Respiratory Alkalosis with hyperoxemia.
- 4. Partly Compensated Metabolic Acidosis with hyperoxemia.
- 5. Uncompensated Respiratory Acidosis with moderate hypoxemia (Mechanical Ventilation Indicated).
- 6. Uncompensated Respiratory Alkalosis with mild hypoxemia.
- 7. Partly Compensated Metabolic Acidosis with moderate hypoxemia.
- 8. Lab Error ($PaO_2 + PaCO_2$ cannot be greater than 159 on room air)
- 9. Mixed Respiratory and Metabolic Alkalosis with mild hypoxemia.
- 10. Mixed alkalosis with severe hypoxemia.
- 11. Partly Compensated Metabolic Alkalosis with severe hypoxemia.
- 12. Uncompensated Metabolic Alkalosis with moderate hypoxemia.
- 13. Partially compensated Metabolic Alkalosis with mild hypoxemia.
- 14. Mixed Respiratory and Metabolic Acidosis with moderate hypoxemia.
- 15. Fully compensated Metabolic Alkalosis with mild hypoxemia.
- 16. Partially compensated Respiratory Alkalosis with normoxemia.
- 17. Uncompensated Respiratory Alkalosis with moderate hypoxemia.
- 18. Uncompensated Metabolic Acidosis with moderate hypoxemia.
- 19. Fully compensated Respiratory Alkalosis with severe hypoxemia.
- 20. Lab Error. ($PaO_2 + PaCO_2$ cannot be greater than 159 on room air)