Self-Assessment RSPT 1050: MODULE I – Ventilation/Perfusion Ratios

- 1. List three clinical conditions in which there is **no hypoxemia**, but the patient has **hypoxia**.
 - a. CARBON MONOXIDE POISONING
 - b. INCREASED LEVELS OF METHEMOGLOBIN
 - c. CYANIDE POISONING
- 2. How is the $\dot{V}_{\dot{Q}}$ ratio calculated? ALVEOLAR VENTILATION DIVIDED BY CARDIAC OUTPUT
- 3. Which portion of the lung has a high $\dot{V}_{\dot{Q}}$ ratio indicating increased deadspace? **APICES**
- 4. Name three clinical situations that will change the normal distribution of ventilation in the lung.
 - a. **BODY POSITION**
 - b. INCREASED AIRWAY RESISTANCE
 - c. REDUCED LUNG COMPLIANCE
- 5. Ventilation will shift away from areas with: (Circle all that apply)
 - a. High compliance
 - b. Low compliance
 - c. High airway resistance
 - d. Low airway resistance
- 7. Define Deadspace. AREAS WHERE VENTILATION EXCEED PERFUSION AND THE \dot{V} RATIO IS GREATER THAN 0.8.
- 8. List two clinical conditions that result in increased deadspace.
 - a. PULMONARY EMBOLISM
 - b. REDUCED CARDIAC OUTPUT
- 9. A true alveolar deadspace in which blood flow to the alveolus is 0 would $\dot{\mathbf{v}}$

result in a $\dot{V}_{\dot{O}}$ ratio

- a. Greater than 0.8
- b. Less than 0.8
- c. Infinity
- d. 0.8
- 10. The volume of any breathing device in which exhaled gas remains and is inspired on the next breath is called **MECHANICAL DEADSPACE**.