RESPIRATORY CARE Standard Abbreviations and Symbols

Editor's Note: This compilation is adapted from the recommendations of the American Physiological Society and the ACCP-ATS Committee on Pulmonary Nomenclature. Some additions have been made.

Primary Symbols

Primary symbols are denoted by upper case, or capital letters.

С	Compliance	S	Saturation in the blood
D	Diffusing capacity		phase
F	Fractional concentration	t	Time
	of a gas	Т	Temperature
Р	Pressure	V	Gas volume
Ċ	Blood flow	Х	Any variable
Q	Blood volume	$\overline{\mathbf{X}}$	Mean value

A bar over a primary symbol denotes a mean or averaged value; for example, \overline{P} is a mean pressure. A dot over a primary symbol denotes a time derivative, for example, \dot{V} is dV/dt, or flow. The second derivative, with respect to time, is denoted by two dots above the primary symbol, for example, \ddot{V} is d²V/dt², or acceleration.

Qualifying Symbols

Qualifying symbols may be denoted by characters of regular size following the primary symbol or by subscripted characters—depending on printing capabilities.

AA	Alveolar	Ι	Inspired
ΒĒ	Barometric	L	Lung
DΙ	Dead space; wasted ventilation	Т	Tidal
ΕE	Expired		

ATPD	Ambient temperature and pressure, dry	
------	---------------------------------------	--

- ATPS Ambient temperature and pressure, saturated with water vapor at these conditions
- BTPS Body temperature and pressure, saturated with water vapor at these conditions
- STPD Standard conditions: temperature 0 °C (273 °K), pressure 760 torr and dry

а	Arterial	est	Estimated
an	Anatomic	max	Maximal
b	Blood, in general	rb	Rebreathing
с	Capillary	v	Venous
ć	Pulmonary end-capillary	$\overline{\mathbf{v}}$	Mixed venous

Abbreviations & Symbols in Common Use

Lung Volumes

TLC	Total lung capacity: the volume in the lungs at
ILC	maximal inflation
RV	Residual volume: the volume of air remaining
	in the lungs after a maximal exhalation
ERV	Expiratory reserve volume: the maximal
	volume of air that can be exhaled from the
	end-expiratory position
IRV	Inspiratory reserve volume: the maximal vol-
	ume that can be inhaled from the end-inspira-
	tory level
IC	Inspiratory capacity: the sum of IRV and TV
IVC	Inspiratory vital capacity: the maximum
	volume of air inhaled from the point of maxi-
	mum expiration
VC	Vital capacity: the volume equal to $TLC - RV$
VT	Tidal volume: that volume of air moved into
	or out of the lungs during quiet breathing
	(VT indicates a subdivision of the lung;
	when tidal volume is precisely measured, as
	in gas exchange calculation, the symbol VT
	or V_T is used.)
FRC	Functional residual capacity: the volume in
	the lungs at the end-expiratory position
	Residual volume expressed as percent of TLC
VA	Alveolar gas volume
V_L	Actual volume of the lung including the
	volume of the conducting airways

Forced Spirometry

FVC	Forced vital capacity: the determination of the
	vital capacity from a maximally forced expira-
	tory effort

- FEV_t Forced expiratory volume (time): a generic term indicating the volume of air exhaled under forced conditions in the first *t* seconds
 FEV₁ Volume that has been exhaled at the end of
- FEV_1 Volume that has been exhausd at the end of the first second of forced expiration

- FEF_x Forced expiratory flow related to some portion of the FVC curve; modifiers refer to amount of FVC already exhaled
- FEF_{max} The maximum instantaneous flow achieved during a FVC maneuver
- $FEF_{25.75\%}$ Forced expiratory flow over the middle half of the FVC, that is, the average flow from the point where 25% of the FVC has been exhaled to the point where 75% has been exhaled. This formerly has been called the maximal midexpiratory flow rate (MMEFR).
- FIF Forced inspiratory flow: (Specific measurement of the forced inspiratory curve is denoted by nomenclature analogous to that for the forced expiratory curve. For example, maximum inspiratory flow is denoted FIF_{max} . Unless otherwise specified, volume qualifiers indicate the volume inspired from RV at the point of measurement.)
- PEF The highest forced expiratory flow measured with a peak flow meter
- MVV Maximal voluntary ventilation: volume of air expired in a specified period during repetitive maximal effort

Ventilation

f	Breathing frequency (breaths/minute or
	breaths/min)
Ϋ́ _A	Alveolar ventilation/min
$\dot{V}_A \\ \dot{V}_D$	Physiologic dead space ventilation/min
Ϋ́ _E	Expired volume/min; V _E is exhaled volume/
	breath
\dot{V}_{CO_2}	Carbon dioxide production/min corrected for
	STPD conditions
\dot{V}_{O_2}	Oxygen consumption/min corrected for STPD
	conditions

Pulmonary Mechanics

C _{dyn}	Dynamic compliance: compliance measured
	at point of zero gas flow at the mouth during
	active breathing
C _{st}	Static compliance: compliance measured
	under conditions of prolonged interruption of
	airflow
E	Elastance: the reciprocal of compliance
G _{aw}	Airway conductance: the reciprocal of Raw
sG _{aw}	Airway conductance at a specific lung volume
Paw	Pressure in the airway; further modifiers to be
	specified
P_A	Alveolar pressure
Pes	Esophageal pressure used to estimate P _{pl}

P_L	Transpulmonary pressure
P _{pl}	Intrapleural pressure
P _{tm}	Transmural pressure, pertaining to an airway
	or blood vessel
PImax	Maximal inspiratory pressure; this term is
	often symbolized as MIP
PEmax	Maximal expiratory pressure; this term is
	often symbolized as MEP
R	Resistance (ie, pressure per unit flow)
R	Mean total resistance ($[R_I + R_E] \div 2$)
R _{aw}	Airway resistance
R _E	Total expiratory resistance measured by
	esophageal balloon method
R _I	Total inspiratory resistance measured by
	esophageal balloon method
R _L	Lung resistance
WOB	Work of breathing

Blood Gas, Acid-Base, & Gas Exchange Terms

P_{aO_2}	Arterial oxygen tension, or partial pressure
P_{AO_2}	Alveolar oxygen tension, or partial pressure
P _{aCO2}	Arterial carbon dioxide tension, or partial
	pressure
P_{ACO_2}	Alveolar carbon dioxide tension, or partial
	pressure
$P_{\overline{v}O_2}$	Oxygen tension of mixed venous blood
P _{(A-a)O2}	Alveolar-arterial oxygen tension difference.
	The term formerly used (A-a DO ₂) is discour-
	aged.
P _{(a/A)O2}	Alveolar-arterial tension ratio; $Pa_{O_2} : P_{AO_2}$.
	We propose the term <i>oxygen exchange index</i>
	to describe this ratio.
C _{(a-v)O2}	Arteriovenous oxygen content difference
S _{aO2}	Oxygen saturation of the hemoglobin of
	arterial blood
S_{pO_2}	Oxygen saturation as measured by pulse
1	oximetry
$C_{a\Omega_2}$	Oxygen content of arterial blood
pH	Symbol relating the hydrogen ion concentra-
1	tion or activity of a solution to that of a stan-
	dard solution; approximately equal to the
	negative logarithm of the hydrogen ion con-
	centration. pH is an indicator of the relative
	acidity or alkalinity of a solution.
	acturity of alkalinity of a solution.

Blood Flow and Shunts

Q	Blood volume
Q	Blood flow (vol

Blood flow (volume units and time must be specific)

Pulmonary capillary blood volume
Physiologic shunt flow (total venous
admixture)
Shunt as percent of total blood flow

Diffusing Capacity

D _{LCOsb}	Diffusing capacity of the lung for carbon	
	monoxide determined by the single-breath	
	technique	
D _m	Diffusing capacity of the alveolocapillary	
	membrane (STPD)	
D/V_A	Diffusion per unit of alveolar volume, with D	
	at STPD and VA in liters BTPS	

SI Units with Abbreviations

SI units are decimal units of measurement for physical properties and quantities that have been adopted by the scientific community worldwide. The reader is referred to Respir Care 1988;33:861-873, Respir Care 1989;34:145, and Respir Care 1997;42(6):639-640 for more information.

Variable	<u>Unit</u>	Abbreviation
temperature	kelvin	K
length	meter	m
mass	kilogram	kg
time	second	S
pressure	pascal	Pa
work, or energy	joule	J

Physical Quantity	Known Unit	Desired Unit	Example of Conversion Calculation
Force (or mass)	lb	kg	$150 \text{ lb} \times \frac{0.4536 \text{ kg}}{1 \text{ lb}} = 68 \text{ kg}$
	kg	lb	$68 \text{ kg} \times \frac{1 \text{ lb}}{0.4536 \text{ kg}} = 150 \text{ lb}$
Pressure	torr	kPa	$35 \operatorname{torr} \times \frac{0.1333 \operatorname{kPa}}{1 \operatorname{torr}} = 4.7 \operatorname{kPa}$
	kPa	torr	$4.7 \text{ kPa} \times \frac{1 \text{ torr}}{0.1333 \text{ kPa}} = 35 \text{ torr}$
	psi	torr	$1.0 \text{ psi} \times \frac{70.31 \text{ cm H}_2\text{O}}{1 \text{ psi}} \times \frac{0.7355 \text{ torr}}{1 \text{ cm H}_2\text{O}} = 52 \text{ torr}$
	torr	psi	51.72 torr $\times \frac{1 \text{ cm H}_2\text{O}}{0.7355 \text{ torr}} \times \frac{1 \text{ psi}}{70.31 \text{ cm H}_2\text{O}} = 1.0 \text{ psi}$
Work	$L\cdot cm \ H_2O$	kg ⋅ m	$20 \text{ L} \cdot \text{cm H}_2\text{O} \times \frac{0.09806 \text{ J}}{1 \text{ L} \cdot \text{cm H}_2\text{O}} \times \frac{1 \text{ kg} \cdot \text{m}}{9.807 \text{ J}} = 0.2 \text{ Kg} \cdot \text{m}$
	J	$L\cdot cm \ H_2O$	$2 \text{ J} \times \frac{1 \text{ kg} \cdot \text{m}}{9.807 \text{ J}} \times \frac{1 \text{ L} \cdot \text{cm H}_2\text{O}}{0.01 \text{ kg} \cdot \text{m}} = 20 \text{ L} \cdot \text{cm H}_2\text{O}$
Power	$kg \cdot m \cdot min^{-1}$	W	$2.5 \text{ kg} \cdot \text{m} \cdot \text{min}^{-1} \times \frac{0.1634 \text{ W}}{1 \text{ kg} \cdot \text{m} \cdot \text{min}^{-1}} = 0.41 \text{ W}$
Compliance	mL/cm H ₂ O	L/kPa	$100 \text{ mL} \cdot \text{cm } H_2 O \times \frac{1 \text{L}}{1000 \text{ mL}} \times \frac{10.20 \text{ L} \cdot \text{kPa}^{-1}}{1 \text{ L} \cdot \text{cm } H_2 O^{-1}} = 1.02 \text{ L} \cdot \text{kPa}^{-1}$
Resistance	cm H ₂ O \cdot s \cdot L ⁻¹	$kPa\cdot s\cdot L^{-1}$	$55 \text{ cm } H_2 O \cdot s \cdot L^{-1} \times \frac{0.090806 \text{ kPa} \cdot L^{-1}}{1 \text{ cm } H_2 O \cdot s \cdot L^{-1}} = 5.4 \text{ kPa} \cdot s \cdot L^{-1}$

Système International: Examples of Conversions Commonly Used in Respiratory Physiology and Respiratory Care

Note: Retain all digits during computation to avoid roundoff error. However, the least precise measurement used in a calculation determines the number of significant digits in the answer. Thus, the final product or quotient should be written with the same number of significant figures as the term with the fewest significant figures, as shown in the examples above. The least ambiguous method of indicating the number of significant figures is to write the number in scientific notation. For example, the number 30 may have either one or two significant figures, but written as 3.0×10^1 , it is understood that there are two significant figures. For more information about scientific notation, significant figures, and rounding off, see Lough MD, Chatburn RL, Shrock WA, Handbook of respiratory care. Chicago: Yearbook Medical Publishers, 1985:170-173.

Physical Quantity	Conventional Unit	SI Unit	Conversion Factor*
Length	inch (in.)	meter (m)	0.025 4
0	foot (ft)	m	0.304 8
Area	in. ²	m^2	6.452×10^{-4}
	ft ²	m^2	0.092 90
Volume	dL (= 100 mL)	L	0.01
	ft ³	 m ³	0.028 32
	ft ³	L	28.32
	fluid ounce	mL	29.57
Amount of substance	mg/dL	mmol/L	10/molecular weight
	mEq/L	mmol/L	valence
	mL of gas at STPD	mmol	0.044 62
Force (weight)	pound (lb)	newton (N)	4.448
	dyne	Ν	0.000 01
	kilogram-force	Ν	9.807
	pound	kilogram-force	0.453 6
	ounce	gram-force	28.35
Pressure	cm H ₂ O	kilopascal (kPa)	0.098 06
	mm Hg (torr)	kPa	0.133 3
	pounds/in.2 (psi)	kPa	6.895
	psi	cm H ₂ O	70.31
	cm H ₂ O	torr	0.7355
	standard atmosphere	kPa	101.3
	millibar (mbar)	kPa	0.100 0
Work, energy	kg · m	joule (J)	9.807
	$L \cdot cm H_2O$	joule (J)	0.098 06
	calorie (cal)	joule (J)	4.185
	kilocalorie (kcal)	J	4 185
	British thermal unit (BTU)	_	1055
Power	$kg \cdot m \cdot min^{-1}$	watt (W)	0.163 4
Surface tension	dyn/cm	N/m	0.001
Compliance	L/cm H ₂ O	L/kPa	10.20
Resistance	$cm \; H_2O \cdot s \cdot L^{-1}$	$kPa \cdot s \cdot L^{-1}$	0.098 06
	$cm \; H_2O \cdot min \cdot L^{-1}$	$kPa\cdot s\cdot L^{-1}$	5.884
Gas transport (ideal gas, STPD)	$mL\cdot s^{-1}\cdot \ cm \ H_2O^{-1}$	$mmol \cdot s^{-1} \cdot kPa^{-1}$	0.455 0
Temperature	°C	°K	°K = °C + 273.15
-	°F	°C	$^{\circ}C = (^{\circ}F - 32)/1.8$
	°C	°F	$^{\circ}F = (1.8 \cdot ^{\circ}C) + 32$

Système International: Conversion Factors for Units Commonly Used in Medicine

*To convert from conventional to SI unit, multiply conventional unit by conversion factor. To convert in the opposite direction, divide by conversion factor. Examples: $10 \text{ torr} = 10 \times 0.133$, 3 kPa = 1.333 kPa, 1 L = 1 L/0.10 = 10 dL

Key to Abbreviations & Acronyms

a-A	arterial-alveolar
AARC	American Association for Respiratory Care
ABG	arterial blood gas
ACCP	American College of Chest Physicians
AHA	American Hospital Association
AI	artificial intelligence
AIDS	acquired immunodeficiency syndrome
ALS	amyotrophic lateral sclerosis
AMP	adenosine monophosphate
APRV	airway pressure release ventilation
ARDS	acute respiratory distress syndrome
ARF	acute respiratory failure
ATS	American Thoracic Society
	unintended positive end-expiratory pressure
B-P	bronchopleural (eg, B-P fistula or air leak)
BPD	bronchopulmonary dysplasia
CAI	computer-assisted instruction
CCC	chondroplasia calcificans congenita
CDC	Centers for Disease Control
CINAHL	Cumulative Index to Nursing & Allied Health
CINAIL	Literature
CLD	chronic lung disease
CO	carbon monoxide
COLD	chronic obstructive lung disease
COP	colloid oncotic pressure
COPD	chronic obstructive pulmonary disease
CO_2	carbon dioxide
CPAP	continuous positive airway pressure
CPR	cardiopulmonary resuscitation
CPT	chest physical therapy
СТ	computerized tomography
D _{LCOsb}	single-breath diffusion of carbon monoxide
	across the lung
DME	durable medical equipment
DRG	diagnosis-related group
ECMO	extracorporeal membrane oxygenation
EIB	exercise-induced bronchospasm
EOA	esophageal obturator airway
EPAP	end-positive airway pressure
FDA	U.S. Food & Drug Administration
FEF25-75%	forced expiratory flow over middle half of
	FVC
FEV	forced expiratory volume
FEV_1	forced expiratory volume in first second
F _{IO2}	fraction of inspired oxygen
F_{DO_2}	fraction of oxygen delivered (by device)

EDC	for a final maridual and a fits
FRC	functional residual capacity
FVC	forced vital capacity
HCFA	Health Care Financing Administration
HFV	high-frequency ventilation
HFJV	high-frequency jet ventilation
HFO	high-frequency oscillation
HFOV	high-frequency oscillatory ventilation
HFPPV	high-frequency positive-pressure ventilation
HFPV	high-frequency percussive ventilation
HIV	human immunodeficiency virus
HMD	hyaline membrane disease
HME	heat & moisture exchanger (artificial nose)
HMEF	heat & moisture exchanging filter
ICP	intracranial pressure
ICU	intensive care unit
I-E	inspiration-expiration (ratio)
ILD	interstitial lung disease
IMV	intermittent mandatory ventilation
IPPB	intermittent positive-pressure breathing
MIGET	multiple inert gas elimination technique
MIP	maximal inspiratory pressure
MLT	minimal leak technique (of cuff inflation)
MRI	magnetic resonance imaging
MV	mechanical ventilation
NBRC	National Board for Respiratory Care
NFPA	National Fire Protection Association
NG	nasogastric (tube)
NHLBI	National Heart, Lung, & Blood Institute
NIH	National Institutes of Health
NOTT	Nocturnal Oxygen Therapy Trial
NO ₂	nitrous oxide
NPPV	noninvasive positive pressure ventilation
OSA	obstructive sleep apnea
O ₂	oxygen
P _{(A-a)O2}	alveolar-arterial oxygen-tension difference
P _{aCO2}	arterial carbon dioxide tension
P_{aO_2}	arterial oxygen tension
PCP	Pneumocystis carinii pneumonia
PDA	patent ductus arteriosus
PEEP	positive end-expiratory pressure
PFC	persistent fetal circulation
PFT	pulmonary function test or testing
PIE	pulmonary interstitial emphysema
P_{O_2}	oxygen tension
PSV	pressure-support ventilation
$P_{\overline{v}O_2}$	mixed venous oxygen tension
102	, , , , , , , , , , , , , , , , , , ,

RCP	respiratory care practitioners (professionals)	$S_{\overline{v}O_2}$	mixed venous oxygen saturation
RDS	respiratory distress syndrome (of infants)	tcP _{O2}	transcutaneous oxygen tension
RICU	respiratory intensive care unit	T-E	tracheoesophageal (fistula)
RIP	respiratory inductive plethysmography	TGV	thoracic gas volume
RQ	respiratory quotient	TLC	total lung capacity
S_{aO_2}	arterial oxygen saturation	USP	United States Pharmacopeia
SCCM	Society for Critical Care Medicine	VA	Veterans Administration
SI	Systèmé International d'Unités (a system of	VC	vital capacity
	units of measure)	V_{CO_2}	carbon dioxide production
SIDS	sudden infant death syndrome	VDR	volumetric diffusion respiration
SIMV	synchronized intermittent mandatory ventila-	V/Q	ventilation-perfusion ratio
	tion	VT	tidal volume
S_{pO_2}	saturation measured via pulse oximetry	WOB	work of breathing