MODULE B

Basic Chemistry Lesson #3 – Part 2 Nomenclature & **Oxidation-Reduction Reactions**

Objectives

- At the end of this module, the student will
 - Define terms associated with the naming of organic compounds and oxidation-reduction reactions.
 - Describe the steps for naming inorganic compounds, (ionic compounds, covalent compounds, and compounds with polyatomic ions).
- Define the components of a chemical reaction.
- Give an example of an oxidation-reduction reaction in Respiratory Therapy.
- Explain how the different chemical reactions take place.

Web Sites

- <u>http://www.geocities.com/Athens/Thebes/</u> 5118/ic/names1.htm
- http://en.wikipedia.org/wiki/Systematic_n ame

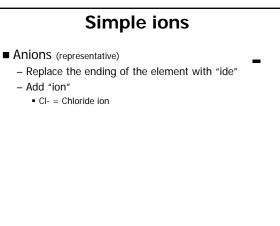
Nomenclature

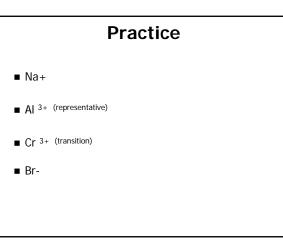
- Definition: A system of words used to name things in a particular discipline.
- The name of a compound has to include enough information to tell chemists the composition and structure of the compound.
- There are over 18 million compounds.

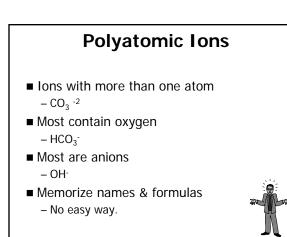
Nomenclature

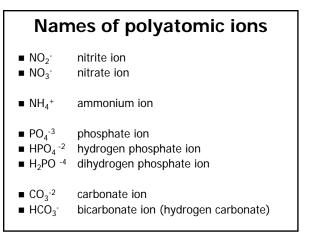
lons

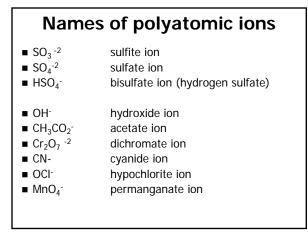
- Simple ions
- Polyatomic ions


Inorganic Compounds


- Ionic compounds
- Molecular compounds

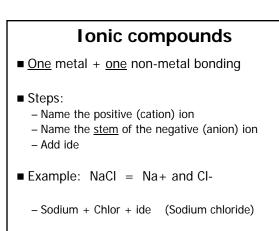

Simple Ions Metal Cations with only one form + (representative) - Identify the metal - Add "ion" K⁺ = Potassium ion Metal Cations with more than one form (transition) - Identify the metal - Give the charge on the ion a roman numeral in parentheses

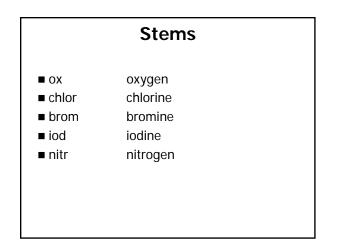

- Add "ion"

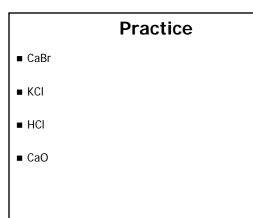

• $Cr^{+2} = Chromium$ (II) ion

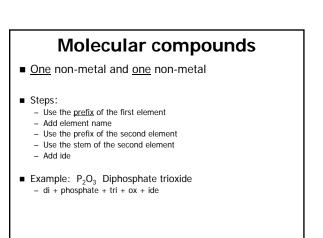


- One element or ion + a polyatomic ion
- Steps:
 - Use the name of the ion
 - Add the name of the polyatomic ion
- Example: MgSO₄ (magnesium sulfate)
 Magnesium + sulfate

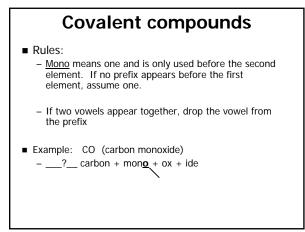

Note: SO₄ *is not* sulfur tetroxide

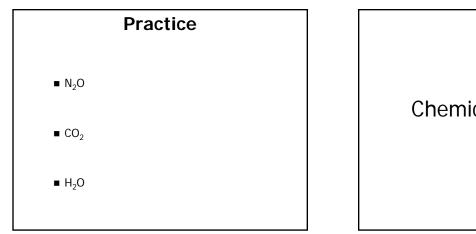

Naming compounds


- **Rule**: The more positive portion of the compound is named first.
 - Metal
 - Positive polyatomic ion
 - Hydrogen
 - Least negative non-metal (farthest left)
- **Rule**: The more negative portion is named and written last.


Practice

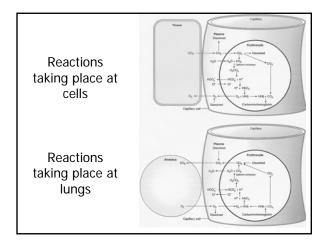
- NaNO₃
- NaHCO₃
- Ca(NO₃)₂
- Mg(OH)₂
- NaOH





	Prefixes
Mono	one
■ Di	two
■ Tri	three
 Tetra 	four
Penta	five
 Hexa 	six
 Hepta 	seven
 Octa 	eight

Objectives


- At the end of this module, the student will
 - Define the components of a chemical reaction.
 - Give an example of an oxidation-reduction
 - reaction in Respiratory Therapy.Explain how the different chemical reactions
 - take place.

Chemical reactions

• Example of a reaction:

$$CO_2 + H_2O \xrightarrow{} H_2CO_3 \xrightarrow{} HCO_3^- + H^+$$

One small reaction in a long chain of reactions.

More about chemical reactions

Definitions:

- Chemical reaction Two substances colliding with enough energy to overcome the repulsion of electrons. (electron movement)
- Chemical equation Shorthand method of describing a chemical change using symbols, arrows and formulas

More about chemical reactions

Definitions:

- Activation energy Something that can increase molecular collisions and change the rate of the chemical reaction.
 - Heat
 - Increased concentrations of substances
 - Pressure
 - Catalyst
- Catalyst Substance that speeds a reaction without being chemically changed in the process (carbonic anhydrase)

More about chemical reactions

Definitions:

- Balance Atoms on one side of an arrow must equal the atoms on the other side of the arrow.
- Law of Conservation Matter cannot be created or destroyed - only changed.

More about chemical reactions

Definitions:

- Reactants substances entering into a reaction.
- Products Substances formed by the reaction.
- Conditions circumstances that may need to be present for the reaction to take place

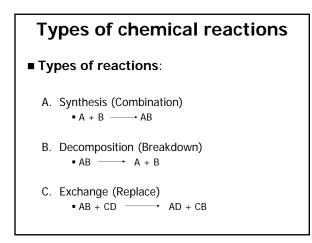
$$H_2CO_3 \longrightarrow HCO_3^- + H^+$$

 $H_2CO_3 \longleftarrow HCO_3 + H^+$

$$H_2CO_3 - HCO_{3-} + H$$

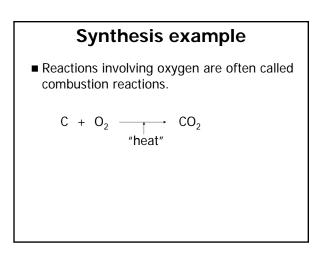
Speed of chemical reactions

Speed of reactions:


■<u>Slow</u> Decay

Rust

Moderate Cement setting


∎<u>Fast</u>

Explosion of dynamite Coals burning

Synthesis Reaction

- Combination of 2 or more substances (reactants) to form different, more complex substances (products).
- Substances formed are usually compounds or or polyatomic ions.
- Bonds are <u>formed</u> in these reactions.
- Energy is <u>required</u> for this reaction to occur.

Synthesis reaction

- Oxidation-Reduction Reaction
 - Batteries
 - Oxygen analyzers
 - Blood gas electrodes

Oxidation-Reduction reaction

- Oxidation Loss of electrons during a chemical reaction.
- Reduction Gain of electrons during a chemical reaction.
- Memory-Aid Acronym: OIL RIG
 - OIL Oxidation Is Loss
 - RIG Reduction Is Gain

Agents in an Oxidation-Reduction Reaction

- Oxidizing agent Accepts the electrons (anion) and is being reduced.
- Reducing agent Releases the electrons (cation) and is being oxidized

http://library.kcc.hawaii.edu/external/che mistry/

Simple electrolyte cell

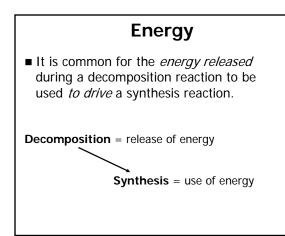
Components of these systems:

- Cathode (-) attracts cations (+), oxidation takes place and electrons are released
- Anode (+) attracts anions (-), reduction takes place where electrons are accepted
 Opposites attract
- Causes flow of electrons and electrical current

Decomposition Reaction

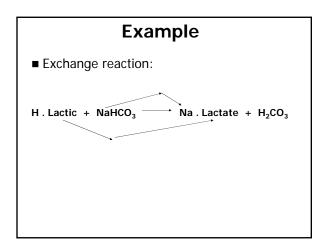
- One complex substance (a compound) undergoes a reaction to form two or more new (simpler) substances (elements or compounds).
- During this reaction, chemical bonds are <u>broken</u>.
- This often <u>releases</u> heat energy.

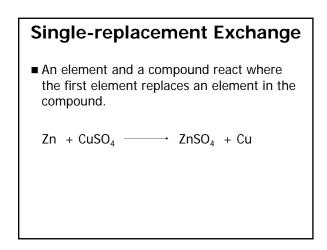
Decomposition Example

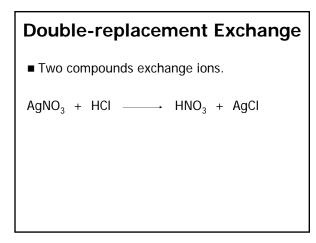

Baking soda reaction:

2NaHCO₃ \longrightarrow Na₂CO₃ + CO₂ + H₂O (solid) (solid) (gas) (liquid)

Decomposition Example


Breakdown of complex nutrients in a cell to release energy for other cellular functions.


- Carbohydrates
- Proteins
- Fats
- Products of these reactions are essentially "waste products".



Exchange Reaction

- Breakdown of substances (reactants) to form different substances (products).
- Bonds are both <u>decomposed</u> and <u>synthesized</u> in these reactions.
- Energy is <u>required</u> and <u>released</u> in this reaction.

Neutralization

An acid reacts with a base , generally producing a salt, water (or weak acid) and heat.

 $\begin{array}{ccc} \text{HCl} + \text{NaOH} & \longrightarrow \text{NaCl} + \text{H}_2\text{O} \\ (strong \\ acid) & (base) & (salt) & (water) \end{array}$

When glucose is converted to carbon dioxide and water by using oxygen in the following relationship: C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O

Clinical Example

- If a person eats a candy bar containing 14.2 g of glucose, how many grams of water will be produced?
 - 14.2 grams of $C_6H_{12}O_6 = ?$ grams of H_2O