SELF-ASSESSMENT - MODULE C - LESSON 7: THERMODYNAMICS AND HUMIDITY

I. TEMPERATURE

State the boiling points and freezing points of water for each of the following scales:

	BOILING POINT		FREEZING POINT	
CELSIUS	1.	100	2.	0
FAHRENHEIT	3.	212	4.	32
KELVIN	5.	373	6.	273

B. The temperature outside is reported as 16° F. What is the temperature in Celsius?

$$5^{\circ}F = 9^{\circ}C + 160$$

$$5 \times 16 = (9 \times {}^{\circ}C) + 160$$

$$80 = (9 \times {}^{\circ}C) + 160$$

$$80 - 160 = 9 \times {}^{\circ}C$$

$$\frac{-80}{9} = {}^{\circ}C = -8.9^{\circ}C$$

- C. List the four ways heat is transferred.
 - 1. **CONDUCTION**
 - 2. **CONVECTION**
 - 3. RADIATION
 - 4. **EVAPORATION**
- D. Convert the following:

$$5^{\circ}F = 9^{\circ}C + 160$$

$$5 \times {^{\circ}}F = (9 \times 50) + 160$$

$$5 \times {^{\circ}}F = 450 + 160$$

$$5 \times {^{\circ}}F = 610$$

$${^{\circ}}F = \frac{610}{5} = 122^{\circ}F$$

$$5^{\circ}F = 9^{\circ}C + 160$$

 $5 \times {}^{\circ}F = (9 \times {}^{-}100) + 160$
 $5 \times {}^{\circ}F = {}^{-}900 + 160$
 $5 \times {}^{\circ}F = {}^{-}740$
 ${}^{\circ}F = \frac{{}^{-}740}{5} = {}^{-}148^{\circ}F$

$$5^{\circ}F = 9^{\circ}C + 160$$

$$5 \times {^{\circ}F} = (9 \times 39) + 160$$

$$5 \times {^{\circ}F} = 351 + 160$$

$$5 \times {^{\circ}F} = 511$$

$${^{\circ}F} = \frac{511}{5} = 102.2^{\circ}F$$

$$5^{\circ}F = 9^{\circ}C + 160$$

 $5 \times {^{\circ}}F = (9 \times {^{-}}10) + 160$
 $5 \times {^{\circ}}F = {^{-}}90 + 160$
 $5 \times {^{\circ}}F = 70$
 ${^{\circ}}F = \frac{70}{5} = 14^{\circ}F$

$$5^{\circ}F = 9^{\circ}C + 160$$

$$5 \times 212 = (9 \times {}^{\circ}C) + 160$$

$$1,060 = (9 \times {}^{\circ}C) + 160$$

$$1,060 - 160 = 9 \times {}^{\circ}C$$

$$\frac{900}{9} = {}^{\circ}C = 100^{\circ}C$$

$$5^{\circ}F = 9^{\circ}C + 160$$
$$5^{\circ}A = (9 \times {}^{\circ}C) + 160$$
$$-200 = (9 \times {}^{\circ}C) + 160$$
$$-200 - 160 = 9 \times {}^{\circ}C$$
$$\frac{-360}{9} = {}^{\circ}C = -40^{\circ}C$$

$$5^{\circ}F = 9^{\circ}C + 160$$

$$5 \times 104 = (9 \times {^{\circ}C}) + 160$$

$$520 = (9 \times {^{\circ}C}) + 160$$

$$520 - 160 = 9 \times {^{\circ}C}$$

$$\frac{360}{9} = {^{\circ}C} = 40^{\circ}C$$

$$5^{\circ}F = 9^{\circ}C + 160$$

$$5^{\circ}C + 160$$

$$5^{\circ}C + 160$$

$$100 = (9 \times {}^{\circ}C) + 160$$

$$100 - 160 = 9 \times {}^{\circ}C$$

$$\frac{260}{9} = {}^{\circ}C = 28.9^{\circ}C$$

9.
$$30^{\circ} \text{ C} = \underline{\hspace{1cm}}^{\circ} \text{ K}$$
 $\overset{\circ}{K} = {}^{\circ}\text{C} + 273$ ${}^{\circ}\text{K} = 30 + 273 = 303^{\circ}\text{K}$

11.
$$218^{\circ} \text{ K} = __ {\circ} \text{ C}$$
 ${\circ} \text{C} = {\circ} \text{K} - 273$ ${\circ} \text{C} = 218 - 273 = -55^{\circ} \text{C}$

12.
$$412^{\circ} \text{ K} = ___^{\circ} \text{ C}$$
 ${}^{\circ}\text{C} = {}^{\circ}\text{K} - 273$ ${}^{\circ}\text{C} = 412 - 273 = 139^{\circ}\text{C}$

13.
$$32^{\circ} F = _{\circ} K$$

$$5^{\circ} F = 9^{\circ} C + 160$$

$$5 \times 32 = (9 \times {\circ} C) + 160$$

$$160 = (9 \times {\circ} C) + 160$$

$$160 - 160 = 9 \times {\circ} C$$

$$\frac{0}{9} = {\circ} C = 0^{\circ} C$$

$${\circ} K = {\circ} C + 273 = 273^{\circ} K$$

II. HEAT

- A. Derive the following caloric contents (in kcal) for the following:
 - 1. A bowl of Lucky Charms that has 1 gram of fat, 27 grams of carbohydrate and 2 grams of protein.

1 g of fat
$$\times \frac{9 \text{ kcal}}{\text{gm of fat}} = 9 \text{ kcal}$$
27 g of CHO $\times \frac{4 \text{ kcal}}{\text{gm of CHO}} = 108 \text{ kcal}$
2 g of protein $\times \frac{4 \text{ kcal}}{\text{gm of protein}} = 8 \text{ kcal}$
Total kcal = 125 kcal or 125,000 cal

2. Two teaspoons of peanut butter that has 16 grams of fat, 7 grams of carbohydrate and 7 grams of protein.

$$16g ext{ of } fat imes \frac{9 ext{ kcal}}{gm ext{ of } fat} = 144 ext{ kcal}$$

$$7 ext{ g of } CHO imes \frac{4 ext{ kcal}}{gm ext{ of } CHO} = 28 ext{ kcal}$$

$$7 ext{ g of } protein imes \frac{4 ext{ kcal}}{gm ext{ of } protein} = 28 ext{ kcal}$$

$$Total ext{ kcal} = 200 ext{ kcal or } 200,000 ext{ cal}$$

3. ½ cup of Cream of Chicken soup that has 3 grams of fat, 10 grams of carbohydrate and 3 grams of protein.

$$3g ext{ of } fat imes rac{9 ext{ kcal}}{gm ext{ of } fat} = 27 ext{ kcal}$$
 $10 ext{ g of } CHO imes rac{4 ext{ kcal}}{gm ext{ of } CHO} = 40 ext{ kcal}$
 $3 ext{ g of } protein imes rac{4 ext{ kcal}}{gm ext{ of } protein} = 12 ext{ kcal}$
 $Total ext{ kcal} = 79 ext{ kcal or } 79,000 ext{ cal}$

4. Two ounces of chopped chicken that has 1 gram of fat, 0 grams of carbohydrate and 13 grams of protein.

1 g of fat
$$\times \frac{9 \text{ kcal}}{\text{gm of fat}} = 9 \text{ kcal}$$
0g of CHO $\times \frac{4 \text{ kcal}}{\text{gm of CHO}} = 0 \text{ kcal}$
13 g of protein $\times \frac{4 \text{ kcal}}{\text{gm of protein}} = 52 \text{ kcal}$
Total kcal = 61 kcal or 61,000 cal

III. Humidity and Aerosol

A. Calculate the relative humidity (RH) if the absolute humidity (AH) today is 18.4 mg/L and the temperature is 23° C.

$$\%RH = \frac{Content}{Capacity} \times 100\%$$

$$\%RH = \frac{18.4 \frac{mg}{L}}{20.6 \frac{mg}{L}} \times 100\%$$

$$\%RH = .893 = 89.3\%$$

B. Calculate the relative humidity (RH) if the absolute humidity (AH) is 25 mg/L and the temperature is 30° C.

$$\%RH = \frac{Content}{Capacity} \times 100\%$$

$$\%RH = \frac{25 \frac{mg}{L}}{30.4 \frac{mg}{L}} \times 100\%$$

$$\%RH = .822 = 82.2\%$$

C. Calculate the relative humidity (RH) if the absolute humidity (AH) is 18.4 mg/L and the temperature is 98.6° F.

$$\%RH = \frac{Content}{Capacity} \times 100\%$$

$$\%RH = \frac{18.4 \frac{mg}{L}}{43.8 \frac{mg}{L}} \times 100\%$$

$$\%RH = .420 = 42.0\%$$

D. Calculate the relative humidity is the absolute humidity is 23.0 mg/L and the temperature is 25° C.

$$\%RH = \frac{Content}{Capacity} \times 100\%$$

$$\%RH = \frac{23.0 \frac{mg}{L}}{23.0 \frac{mg}{L}} \times 100\%$$

$$\%RH = 1.00 = 100.0\%$$

E. Calculate the relative humidity if the PH_2O today is 19.8 mm Hg and the temperature is 37° C.

A content of 19.8 mmHg occursat temperature of 22°C. This is equivalent to a content at this temperature is 19.4 mg/L
$$\%RH = \frac{Content}{Capacity} \times 100\%$$

$$\%RH = \frac{19.8 \frac{mg}{L}}{43.8 \frac{mg}{L}} \times 100\%$$

$$\%RH = .452 = 45.2\%$$

F. Calculate the relative humidity if the PH₂O today is 17.5 mm Hg and the temperature is 22° C.

$$\%RH = \frac{Content}{Capacity} \times 100\%$$

$$\%RH = \frac{17.5 \frac{mg}{L}}{19.4 \frac{mg}{L}} \times 100\%$$

$$\%RH = .902 = 90.2\%$$

$$AH = Capacity \times \%RH$$

$$AH = 23 \frac{mg}{L} \times 0.50 = 11.5 \frac{mg}{L}$$

$$AH = Capacity \times \%RH$$

$$AH = 17.3 \frac{mg}{L} \times 0.30 = 5.19 \approx 5.2 \frac{mg}{L}$$

$$AH = Capacity \times \%RH$$

$$AH = 37.6 \frac{mg}{L} \times 0.45 = 16.9 \frac{mg}{L}$$

$$AH = Capacity \times \%RH$$

$$AH = 43.8 \frac{mg}{L} \times 1.00 = 43.8 \frac{mg}{L}$$

$$AH = Capacity \times \%RH$$

$$AH = 30.4 \frac{mg}{L} \times 0.65 = 19.8 \frac{mg}{L}$$

$$HD = Absolute \ Humidity - Body \ Humidity$$

$$HD = 19.8 \frac{mg}{L} - 43.8 \frac{mg}{L} = -24.0 \frac{mg}{L}$$

L. Calculate the humidity deficit of inspired air at 37° C and a relative humidity of 100%.

$$AH = Capacity \times \%RH$$
 $AH = 43.8 \frac{mg}{L} \times 1.00 = 43.8 \frac{mg}{L}$
 $HD = Absolute\ Humidity\ -\ Body\ Humidity$
 $HD = 43.8 \frac{mg}{L} - 43.8 \frac{mg}{L} = 0 \frac{mg}{L}$

M. Calculate the humidity deficit of inspired air at 20° C and a relative humidity of 80%.

$$AH = Capacity \times \%RH$$
 $AH = 17.3 \frac{mg}{L} \times 0.80 = 13.8 \frac{mg}{L}$
 $HD = Absolute\ Humidity - Body\ Humidity$
 $HD = 13.8 \frac{mg}{L} - 43.8 \frac{mg}{L} = 30 \frac{mg}{L}$

IV. CYLINDER DURATION CALCULATIONS

A. The gauge on an H cylinder of O₂ reads 2000 psig. About how long would the contents of this cylinder last, until completely empty, at a flow of 6 L/min?

$$Duration of Cylinder = \frac{Amount of Gas}{Flow}$$

$$Duration of Cylinder = \frac{Pressure (psig) \times Cylinder Factor}{Flow (L/min)}$$

$$Duration of Cylinder = \frac{2,000 \ psig \times 3.14}{6 \ min} = \frac{6,280}{6} = 1046.7 \ min = 17 \ hours, 27 \ min.$$

B. The gauge on an E cylinder of O₂ reads 800 psig. About how long would the contents of this cylinder last, until completely empty, at a flow of 3 L/min?

$$Duration of Cylinder = \frac{Amount of Gas}{Flow}$$

$$Duration of Cylinder = \frac{Pressure (psig) \times Cylinder Factor}{Flow (L/min)}$$

$$Duration of Cylinder = \frac{800 \ psig \times 0.28}{3 \ L/min} = \frac{224}{3} = 74.7 \ min = 1 \ hour, 14.6 \ min.$$

C. You are planning a patient transport that will take about 2 hours. The patient requires manual ventilation with 10 L/min of O₂. What is the minimum number of full E cylinders (2,000 psig) would you need to take with you?

$$Duration of Cylinder = \frac{Amount of Gas}{Flow}$$

$$Duration of Cylinder = \frac{Pressure (psig) \times Cylinder Factor}{Flow (L/min)}$$

$$Duration of Cylinder = \frac{2,000 \ psig \times 0.28}{10 \ min} = \frac{560}{10} = 56 \ min.$$

$$3 \ cylinders \ will \ be \ needed \ (2 \ would \ leave \ you \ 8 \ minutes \ short! \)$$

- One L of liquid O₂ is the equivalent of about how many L of gaseous O₂?860 L
- E. 5 pounds of liquid oxygen is present in a canister. If a nasal cannula is being used at 3 l/min, how long will the canister last?

Amount of Gas in Cylinder =
$$\frac{Liquid O_2 \text{ weight} \times 860}{2.5 \, lb/L}$$
Amount of Gas =
$$\frac{5 \, lb \times 860}{2.5 \, lb/L} = \frac{4,300}{2.5} = 1,720 \, L$$

Duration of Cylinder =
$$\frac{Amount of Gas}{Flow}$$
Duration of Cylinder = $\frac{1,720 \text{ L}}{3^{\text{L}}/min}$ = 573.3 min = 9 hours, 33 minutes!

F. 35 pounds of liquid oxygen is in a stationary reservoir. If a simple mask running at 6 liters/minute is attached, how long will the reservoir last?

Amount of Gas in Cylinder =
$$\frac{Liquid O_2 \text{ weight} \times 860}{2.5 \frac{lb}{L}}$$
Amount of Gas =
$$\frac{35 lb \times 860}{2.5 \frac{lb}{L}} = \frac{30,100}{2.5} = 12,040 L$$

Duration of Cylinder =
$$\frac{Amount \text{ of Gas}}{Flow}$$
Duration of Cylinder =
$$\frac{12,040 \text{ L}}{6 \frac{L}{min}} = 2006.7 \text{ min} = 33 \text{ hours, 27 minutes!}$$