Calculating Time Constants and Expiratory Time Use three time constants to calculate the expiratory time

1. Given a static compliance of $30 \mathrm{~mL} / \mathrm{cm} \mathrm{H}_{2} \mathrm{O}$ and a Raw of $25 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}$, calculate the following.
A. 1 time constant $=0.03 \mathrm{~L} / \mathrm{cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O} \times 25 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}=0.75$ seconds
B. Expiratory time $=.75$ seconds $\times 3=2.25$ seconds
2. Given a static compliance of $60 \mathrm{~mL} / \mathrm{cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ and a Raw of $15 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}$, calculate the following:
A. 1 time constant $=0.06 \mathrm{~L} / \mathrm{cm} \mathrm{H}_{2} \mathrm{O} \times 15 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}=0.9$ seconds
B. Expiratory time $=0.9$ seconds $\times 3=2.7$ seconds
3. Given a static compliance of $20 \mathrm{~mL} / \mathrm{cm} \mathrm{H}_{2} \mathrm{O}$ and a Raw of $20 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}$, calculate the following:
A. 1 time constant $=0.02 \mathrm{~L} / \mathrm{cm} \mathrm{H}_{2} \mathrm{O} \times 20 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}=0.4$ seconds
B. Expiratory time $=0.4$ seconds $\times 3=1.2$ seconds
4. Given a static compliance of $40 \mathrm{~mL} / \mathrm{cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ and a Raw of $35 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}$, calculate the following:
A. 1 time constant $=0.04 \mathrm{~L} / \mathrm{cm} \mathrm{H}_{2} \mathrm{O} \times 35 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}=1.4$ seconds
B. Expiratory time $=1.4$ seconds $* 3=4.2$ seconds
5. Given a static compliance of $15 \mathrm{~mL} / \mathrm{cm} \mathrm{H}_{2} \mathrm{O}$ and a Raw of $30 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}$, calculate the following:
A. 1 time constant $=0.015 \mathrm{~L} / \mathrm{cm} \mathrm{H}_{2} \mathrm{O} \times 30 \mathrm{~cm} \mathrm{H} \mathrm{H}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}=0.45$ seconds
B. Expiratory time $=0.45 \times 3=1.35$ seconds
6. Given a static compliance of $80 \mathrm{~mL} / \mathrm{cm} \mathrm{H}_{2} \mathrm{O}$ and a Raw of $6 \mathrm{~cm} \mathrm{H}_{2} \mathrm{O} / \mathrm{L} / \mathrm{sec}$, calculate the following:
A. 1 time constant $=0.08 \mathrm{~mL} / \mathrm{cm} \mathrm{H}_{2} \mathrm{O} \times 6 \mathrm{~cm} \mathrm{H} \mathrm{O} / \mathrm{L} / \mathrm{sec}=.48$ seconds
B. Expiratory time $=0.48$ seconds $\times 3=1.44$ seconds
