SELF-ASSESSMENT RSPT 2350: MODULE K – CAPNOGRAPHY

- 1. What is the difference between capnography and capnometry?
 - A. CAPNOMETRY IS THE MEASUREMENT AND <u>NUMERICAL</u> DISPLAY OF CO₂ APPEARING AT THE AIRWAY.
 - B. CAPNOGRAPHY IS THE MEASUREMENT AND <u>GRAPHIC</u> DISPLAY OF THE CO₂ APPEARING AT THE AIRWAY.
- 2. Name the two principle ways of measuring exhaled CO₂.
 - A. MAINSTREAM SAMPLING
 - B. SIDESTREAM SAMPLING

3. Draw a capnogram and label the four phases. Explain the significance of each phase.

- 4. List the normal value for the following
 - A. PICO₂: 0.3 mm Hg
 - B. PaCO₂: 40 mm Hg
 - C. FICO₂: 0.03%
 - D. PETCO₂: 30-35 mm Hg
 - E. PACO₂: 40 mm Hg
 - F. *PECO*₂: 30-35 mm Hg|
- 5. What color will a colorimetric carbon dioxide detector (Easy Cap) turn if the endotracheal tube is in the trachea? **BIG BIRD GOOD, BARNEY BAD (YELLOW GOOD)**
- 6. What color will it be after 6 breaths if the tube is in the esophagus? **PURPLE**

- 7. What is the normal a-ADCO₂ gradient? LESS THAN 5 mm Hg.
- 8. Explain the effects of Deadspace on the a-ADCO₂ gradient. **INCREASES**
- 9. Explain the effects of shunting on the a-ADCO₂ gradient. **NO CHANGE**
- 10. What will happen to the CO₂ gradient in pure hyperventilation or pure hypoventilation? THERE ARE NO REAL $\dot{V}_{\dot{Q}}$ ABNORMALITIES IN PURE HYPER- OR HYPOVENTILATION. IF THE PACO₂ INCREASES, PETCO₂ WILL INCREASE UNLESS IT IS SO SEVERE THAT THE PATIENT IS NOT BREATHING AT ALL (RESPIRATORY ARREST) OR IS ONLY MOVING DEADSPACE GAS (INEFFECTIVE VENTILATION). IN THIS INSTANCE, THE PETCO₂ WILL SHARPLY DECREASE.
- 11. Draw a picture of the capnogram you would expect to see with COPD.

- 12. List 4 clinical conditions that would result in an increase in alveolar deadspace.
 - A. COPD
 - B. PULMONARY HYPOPERFUSION
 - C. PULMONARY EMBOLISM
 - D. AIR EMBOLISM
 - E. CARDIAC ARREST
 - F. SHOCK (HYPOVOLEMIA OR CARDIOGENIC)
- 13. List 3 clinical conditions that would result in an increase in capillary shunting.
 - A. **ATELECTASIS**
 - B. **PNEUMONIA**
 - C. MUCUS PLUGGING
 - D. BRONCHIAL INTUBATION
- 14. Explain how you might use the a-ADCO₂ gradient to track the level of optimal PEEP.

THE PETCO₂ CORRELATES WITH CARDIAC OUTPUT (PULMONARY BLOOD FLOW). AS PEEP BECOMES SUB-OPTIMAL, THE GRADIENT WILL WIDEN.

- 15. Explain how the following conditions would effect the capnogram tracing:
 - A. Hyperthermia: INCREASE IN PETCO₂
 - B. Hypothermia: SUSTAINED LOW PETCO₂
 - C. Decreased perfusion: **EXPONENTIAL DECREASE IN PETCO**₂
 - D. Rebreathing of CO₂: **A RISE IN THE BASELINE**
 - E. Partial airway obstruction: **SUSTAINED LOW PETCO**₂
 - F. Hyperventilation: SUSTAINED LOW PETCO₂
 - G. Hypoventilation: INCREASE IN PETCO₂
- 16. Explain what is meant by the curare cleft.

A DOWNWARD SPIKE ("CURARE CLEFT") MAY BE SEEN THE PATIENT RECOVERING FROM NEUROMUSCULAR BLOCKADE.

17. Draw a picture of a slow speed capnogram.

